Cambridge IGCSE[™] | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | CHEMISTRY 0620/32 Paper 3 Theory (Core) February/March 2021 1 hour 15 minutes You must answer on the question paper. No additional materials are needed. ## **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do **not** use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. ## **INFORMATION** - The total mark for this paper is 80. - The number of marks for each question or part question is shown in brackets []. - The Periodic Table is printed in the question paper. [Total: 5] 1 The diagram shows part of the Periodic Table. | - | Ш | | | | | | | Ш | IV | V | VI | VII | VIII | |---|----|--|----|----|----|----|----|----|----|---|----|-----|------| С | N | 0 | F | | | | Mg | | | | | | | Αl | | | | Cl | Ar | | K | Ca | | Cr | Fe | | Cu | Zn | | | | | Br | | | | | | | | | | | | | | | I | | | | | | | | Pt | | | | | | | | | Answer the following questions using only the symbols of the elements in the diagram. Each symbol may be used once, more than once or not at all. Give the symbol of the element that: | (a) | is extracted from bauxite | | |-----|--|----| | | [1 | 1] | | (b) | forms 21% of clean, dry air | | | | [1 | 1] | | (c) | forms an oxide which contributes to acid rain | | | | [1 | 1] | | (d) | forms an aqueous ion that gives a red-brown precipitate on addition of aqueou sodium hydroxide | S | | | [1 | 1] | | (e) | has an atom with a complete outer electron shell. | | | | [1 | 1] | 2 The table shows the mass of some of the ions in a 1000 cm³ sample of sea water. | name of ion | formula of ion | mass of ion in 1000 cm ³ of sea water/mg | |-------------------|---|---| | bromide | Br⁻ | 65 | | calcium | Ca ²⁺ | 400 | | chloride | C1 ⁻ | 18 980 | | hydrogencarbonate | HCO ₃ - | 140 | | magnesium | Mg ²⁺ | 1262 | | metaborate | B ₃ O ₆ ³⁻ | 26 | | | K ⁺ | 380 | | sodium | Na⁺ | 10556 | | strontium | Sr ²⁺ | 13 | | | SO ₄ ²⁻ | 2649 | | (a) | Ans | swer these questions using only the information in the table. | |-----|-------|--| | | (i) | State which negative ion has the lowest mass in 1000 cm³ of sea water. | | | | [1] | | | (ii) | Give the formulae of the ions in potassium sulfate. | | | | and [1] | | | (iii) | Calculate the mass of calcium ions in 200 cm³ of this sample of sea water. | | | | | | | | | | | | mass = mg [1] | | | (iv) | A sample of this sea water is evaporated. | | | | State the name of the compound which is present in the greatest quantity when this sample is evaporated. | | | | [1] | | | (v) | Give the name of the ion which reacts with aqueous silver nitrate to give a cream precipitate. | [Total: 12] (b) The ${\rm B_3O_6^{3-}}$ ion can be converted to boric acid, ${\rm H_3BO_3}$. Boric acid is also produced when boron trichloride, $\mathrm{BC}\mathit{l}_{\mathrm{3}},$ reacts with water. Complete the equation for this reaction. $$BCl_3 +H_2O \rightarrow H_3BO_3 +HCl$$ [2] (c) The symbol of a strontium ion is shown. | | Dec | duce the number of electrons, protons and neutrons in one atom of this strontium ion. | | | |-----|--------------------|---|-----|--| | | nur | nber of electrons | | | | | nur | nber of protons | | | | | number of neutrons | | | | | | | | [3] | | | (d) | Sor | me isotopes of strontium are radioactive. | | | | | (i) | Give one medical use of radioactive isotopes. | | | | | | | [1] | | | | (ii) | The isotope ²³⁵ U is also radioactive. | | | | | | State the major use of this isotope of uranium. | | | | | | | [1] | | | | | | | | **3** The table shows some properties of four halogens. | element | melting point
in °C | boiling point
in °C | density of liquid
at melting point
in g/cm ³ | | | |----------|------------------------|------------------------|---|--|--| | fluorine | -220 | -188 | | | | | chlorine | -101 | | 1.56 | | | | bromine | -7 | 59 | 3.12 | | | | iodine | 114 | 184 | 4.93 | | | | (a) | (i) | Complete the table by predicting: | | |-----|------|--|-----| | | | the boiling point of chlorine the density of fluorine at its melting point. | [2] | | | (ii) | Describe the trend in the melting points of the halogens down the group. | | | | | | [1] | | (| iii) | Deduce the physical state of iodine at 130 °C. Explain your answer. | | | | | | | | | | | | | | | | [2] | | (b) | (i) | Give the electronic structure of a fluorine atom. | | | | | | [1] | | | (ii) | Explain why a fluoride ion has a single negative charge. | | | | | | | | | | | [1] | | (c) | | gnesium reacts with excess fluorine to produce magnesium fluoride.
en 2.40g of magnesium is reacted, 6.20g of magnesium fluoride is produced. | | | | Cal | culate the mass of magnesium needed to produce 1.24g of magnesium fluoride. | | mass of magnesium = g [1] [Total: 8] **4** A student investigates the reaction of magnesium powder with dilute hydrochloric acid. The magnesium is in excess. $$Mg + 2HCl \rightarrow MgCl_2 + H_2$$ The rate of reaction can be found by measuring the increase in volume of hydrogen with time. The results are shown on the graph. (a) Deduce the time taken for the reaction to finish. **(b)** The experiment is repeated using dilute hydrochloric acid of a lower concentration. Draw a line **on the grid** to show how the volume of hydrogen changes with time using dilute hydrochloric acid of a lower concentration. All other conditions stay the same. [2] | (c) | | scribe the effect each of the following has on the rate of reaction of magnesium wit
Irochloric acid. | h | | | | | |-----|--------------|--|--------|--|--|--|--| | | • | The temperature is increased. | | | | | | | | | All other conditions stay the same. | | | | | | | | • | Magnesium ribbon is used instead of magnesium powder. | | | | | | | | | All other conditions stay the same. | | | | | | | | | [2 |
2] | | | | | | (d) | Нус | drochloric acid reacts with calcium carbonate. | | | | | | | | Naı | me the products of this reaction and give the observations. | | | | | | | | pro | ducts | | | | | | | | | | | | | | | | | observations | | | | | | | | | •••• | [4 |
4] | | | | | | | | [Total: 9 | 9] | | | | | - 5 This question is about sulfur and compounds of sulfur. - (a) Sulfur is a non-metal. Describe three physical properties which are typical of non-metals. 1 2 3 (b) Name one source of sulfur.[1] (c) When carbon is heated with sulfur, carbon disulfide, CS₂, is produced. $$C + 2S \rightarrow CS_2$$ - (i) Complete the energy level diagram for the production of carbon disulfide by writing these formulae on the diagram: - C + 2S - CS₂. [1] (ii) Explain, using information on the energy level diagram, how you know that this reaction is endothermic.[1] | (d) | Car | bon disulfide is a liquid at room temperature. | |-----|------|--| | | Des | scribe the separation and motion of the particles in carbon disulfide liquid. | | | sep | aration | | | mot | ion[2] | | (0) | Llvc | Irogen sulfide is a gas which turns filter paper soaked in aqueous lead($ m II$) ethanoate from | | (e) | | te to black. | | | Нус | lrogen sulfide is slightly soluble in water. | | | A lo | ng glass tube is set up as shown. | | | | long glass tube | | | | | | | | cotton wool soaked in filter paper soaked in | | | | aqueous hydrogen sulfide aqueous lead(II) ethanoate | | | | irst, the filter paper soaked in aqueous lead(II) ethanoate does not turn black. α a short time, the filter paper soaked in aqueous lead(II) ethanoate turns black. | | | Ехр | lain these observations using the kinetic particle model. | [3] | | (f) | Sulf | fur dioxide is a pollutant in the air. | | | (i) | Give one adverse effect of sulfur dioxide on buildings. | | | | [1] | | | (ii) | Sulfur dioxide is used to bleach paper. | | | | Give one other use of sulfur dioxide. | | | | [1] | | | | [Total: 13] | [2] **6** The structure of compound **A** is shown. | (a) (i) | On the structure of compound A , draw a circle around the carboxylic acid functional group. [1] | |----------------|---| | (ii) | State the name of the carboxylic acid that has only two carbon atoms. | | | [1] | | (iii) | Deduce the molecular formula of compound ${\bf A}$ to show the number of carbon, hydrogen and oxygen atoms. | | | [1] | | (iv) | Explain, by referring to its structure, why compound A is described as unsaturated. | | | [1] | | (b) Eth | ene is an unsaturated hydrocarbon. | Draw the structure of ethene to show all of the atoms and all of the bonds. | | | | [2] | |-----|------|---|-----| | (c) | Eth | ene can be produced by cracking hydrocarbons. | | | | (i) | State the meaning of the term <i>cracking</i> . | | | | | | | | | | | [1] | | | (ii) | Give the conditions required for cracking. | | | | | 1 | | | | | 2 | | [Total: 12] | (d) | Ethene can be polymerised. | | |-----|--|-----| | | Complete these sentences about the polymerisation of ethene using words from the list. | | | | addition decomposition neutralisation poly(ethene) | | | | poly(ethane) reduction <i>Terylene</i> | | | | When ethene polymerises, it produces a molecule called | | | | The type of reaction which occurs is | [2] | | (e) | Describe one pollution problem caused by non-biodegradable plastics. | [1] | | | | ניו | [4] 7 | Sodiu | m is manufactured by electrolysis. | |-------|---| | (a) E | xplain why sodium is manufactured by electrolysis and not by reduction with carbon. | | | [1] | | | | | (b) T | he diagram shows the equipment for the production of sodium. | | | molten sodium chloride power supply | | (i |) The anode is inert. | | | Suggest a suitable substance that can be used for the anode. | | | [1] | | (ii |) Label the anode on the diagram. [1] | | (iii | Describe, by reference to the diagram, how you know that sodium is less dense than
molten sodium chloride. | | | [1] | | | When concentrated aqueous sodium chloride is electrolysed, gases are produced at each lectrode. | | S | tate the names of the products and give the observations at each electrode. | | р | roduct at the negative electrode | | 0 | bservations at the negative electrode | | | | | р | roduct at the positive electrode | | 0 | bservations at the positive electrode | | | | | (d) | Give two ways in which the physical properties of sodium are different from the phys properties of transition elements. | ical | |-----|--|------| | | 1 | | | | 2 | | | | | [2] | | (e) | The symbol equation for the production of sodium hydride is shown. | | | | 2Na + $H_2 \rightarrow 2NaH$ | | | | (i) Write a word equation for this reaction. | | | | | [1] | | | ii) Suggest why the hydrogen must be dry. | | | | | [1] | | (| ii) Sodium hydride reduces iron(III) oxide to iron. | | | | $Fe_2O_3 + 3NaH \rightarrow 2Fe + 3NaOH$ | | | | Explain how this equation shows that iron(III) oxide is reduced. | | | | | [1] | | | | | | (f) | State the colour observed in the flame test for sodium. | | | | | [1] | | | [Total: | 14] | - 8 Aqueous ammonia is an alkali. - (a) Complete the dot-and-cross diagram to show the electron arrangement in a molecule of ammonia. [2] (b) Complete the word equation for the reaction of aqueous ammonia with dilute hydrochloric acid. [1] **(c)** Describe the colour change when excess aqueous ammonia is added to an acidified solution of methyl orange. from to [1] [2] [Total: 7] (d) Aqueous ammonia reacts with aqueous copper(II) ions to produce compound B. The formula of compound **B** is CuN₄H₁₆O₂. Complete the table to calculate the relative molecular mass of compound B. | type of atom | number
of atoms | relative
atomic mass | | |--------------|--------------------|-------------------------|-------------| | copper | 1 | 64 | 1 × 64 = 64 | | nitrogen | 4 | 14 | 4 × 14 = 56 | | hydrogen | | 1 | | | oxygen | | 16 | | | (e) | Ammonia is used in the production of fertilisers. | | |-----|--|-----| | | State why farmers put fertilisers on the soil where crops are to be grown. | | | | | [1] | relative molecular mass = Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge. The Periodic Table of Elements | | = | _ 0 | שַׁ שַּ |) | Φ | nc
C | ~ | _ | on
C | 23 | | ton
+ | 4 | Φ | e – | .0 | _ | uo . | | | | |-------|----------|-----|---------------|---------------|--------------|------------------------------|----|----|------------------|----|----|-----------------|----|----------|------------------|-------|-------------|-----------------|--------|-----------|--------------------| | | = | r I | helium 4 | 7 | Z | 7 Je | 7 | ⋖ | arg
4(| 3 | | kryp
8 | 2 | × | xen
13 | 8 | 2 | rad | | | | | | ₹ | | | 6 | Щ | fluorine
19 | 17 | Cl | chlorine
35.5 | 35 | ğ | bromine
80 | 53 | Н | iodine
127 | 85 | Αt | astatine
- | | | | | | 5 | | | 80 | 0 | oxygen
16 | 16 | ഗ | sulfur
32 | 34 | Se | selenium
79 | 52 | <u>a</u> | tellurium
128 | 84 | Ъ | polonium | 116 | _ | livermorium
- | | | > | | | 7 | z | nitrogen
14 | 15 | ₾ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sp | antimony
122 | 83 | <u>B</u> | bismuth
209 | | | | | | ≥ | | | 9 | ပ | carbon
12 | 14 | :S | silicon
28 | 32 | Ge | germanium
73 | 20 | Sn | tin
119 | 82 | Pp | lead
207 | 114 | Fl | flerovium | | | ≡ | | | 5 | В | boron
11 | 13 | Αl | aluminium
27 | 31 | Ga | gallium
70 | 49 | In | indium
115 | 18 | 11 | thallium
204 | | | | | | | | | | | | | | | 30 | Zu | zinc
65 | 48 | В | cadmium
112 | 80 | Hg | mercury
201 | 112 | S | copernicium | | | | | | | | | | | | 59 | Cn | copper
64 | 47 | Ag | silver
108 | 79 | Au | gold
197 | 111 | Rg | roentgenium | | Group | | | | | | | | | | 28 | Ë | nickel
59 | 46 | Pd | palladium
106 | 78 | ₹ | platinum
195 | 110 | Ds | darmstadtium
- | | Group | | | | | | | | | | 27 | ဝိ | cobalt
59 | 45 | Rh | rhodium
103 | 11 | 'n | iridium
192 | 109 | ¥ | meitnerium
- | | | | - ⊐ | hydrogen
1 | | | | | | | 26 | Ь | iron
56 | 44 | Ru | ruthenium
101 | 92 | SO | osmium
190 | 108 | Hs | hassium | | | | | | J | | | | | | 25 | Mn | manganese
55 | 43 | ပ | technetium
- | 75 | Re | rhenium
186 | 107 | В | bohrium | | | | | | | ГО | ss | | | | 24 | ပ် | chromium
52 | 42 | Mo | molybdenum
96 | 74 | > | tungsten
184 | 106 | Sg | seaborgium
- | | | | | Key | atomic number | atomic symbo | name
relative atomic mass | | | | 23 | > | vanadium
51 | 14 | q | niobium
93 | 73 | <u>n</u> | tantalum
181 | 105 | op
O | dubnium
- | | | | | | ğ | ator | relat | | | | 22 | i= | titanium
48 | 40 | Zr | zirconium
91 | 72 | 茔 | hafnium
178 | 104 | ፟ጟ | rutherfordium
- | | | | | | | | | J | | | 21 | Sc | scandium
45 | 39 | > | yttrium
89 | 57-71 | lanthanoids | | 89–103 | actinoids | | | | = | • | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 38 | ഗ് | strontium
88 | 56 | Ba | barium
137 | 88 | Ra | radium | | | _ | • | | 3 | := | lithium
7 | 1 | Na | sodium
23 | 19 | ¥ | potassium
39 | 37 | Rb | rubidium
85 | 55 | S | caesium
133 | 87 | Ē. | francium
- | | Lu
Lu | lutetium
175 | 103 | ت | lawrencium | ı | |---------------|---------------------|-----|-----------|--------------|-----| | oz
Yb | ytterbium
173 | 102 | 2 | nobelium | ı | | ₆₉ | thulium
169 | 101 | Md | mendelevium | ı | | es
Er | erbium
167 | 100 | Fm | fermium | I | | 67
Ho | holmium
165 | 66 | Es | einsteinium | I | | °°
Dy | dysprosium
163 | 86 | ర | californium | ı | | e5
Tb | terbium
159 | 97 | Ř | berkelium | ı | | Gd | gadolinium
157 | 96 | Cm | curium | ı | | e3
Eu | europium
152 | 92 | Am | americium | ı | | ss
Sm | samarium
150 | 94 | Pn | plutonium | ı | | Pm | promethium
- | 93 | ď | neptunium | ı | | ° PN | neodymium
144 | 92 | \supset | uranium | 238 | | 59
Pr | praseodymium
141 | 91 | Ра | protactinium | 231 | | Se
Ce | cerium
140 | 06 | ┖ | thorium | 232 | | 57
La | lanthanum
139 | 88 | Ac | actinium | ı | lanthanoids actinoids The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).